FROBENIUS RING HOMOMORPHISMS

MITSUO HOSHINO, NORITSUGU KAMEYAMA AND HIROTAKA KOGA

ABSTRACT. We introduce the notion of Frobenius ring homomorphisms and show that if $R \to A$ is a Frobenius ring homomorphism then A inherits various homological properties from R. Especially, for a Frobenius ring homomorphism $R \to A$ we show that if R is an Auslander-Gorenstein ring then so is A with inj dim $A \leq inj \dim R$.

1. Preliminaries

Let R be a ring. We denote by Mod-R the category of right R-modules and by mod-Rthe full subcategory of Mod-R consisting of finitely presented modules. We denote by \mathcal{P}_R the full subcategory of mod-R consisting of projective modules. We denote by R^{op} the opposite ring of R and consider left R-modules as right R^{op} -modules. In particular, we denote by $\text{Hom}_R(-, -)$ (resp., $\text{Hom}_{R^{\text{op}}}(-, -)$) the set of homomorphisms in Mod-R (resp., Mod- R^{op}) and by gl dim R (resp., gl dim R^{op}) the right (resp., left) global dimension of R. Similarly, we denote by inj dim R (resp., inj dim R^{op}) the injective dimension of the right (resp., left) R-module R. Sometimes, we use the notation X_R (resp., $_RX$) to stress that the module X considered is a right (resp., left) R-module. For each complex X^{\bullet} we denote by $Z^i(X^{\bullet})$, $Z^n(X^{\bullet})$ and $H^i(X^{\bullet})$ the *i*th cycle, *i*th cocycle and the *i*th cohomology, respectively. We denote by $\text{Hom}^{\bullet}(-, -)$ (resp., $-\otimes^{\bullet} -$) the hom (resp., tensor) complex. Finally, for a module $X \in \text{Mod-}R$ we denote by add(X) the full subcategory of Mod-Aconsisting of direct summands of finite direct sums of copies of X.

In this section, we recall several basic facts which are well-known.

Proposition 1 (Auslander). Let R be a left and right noetherian ring. Then for any $n \ge 0$ the following are equivalent:

- (1) In a minimal injective resolution $R \to I^{\bullet}$ in Mod-R, flat dim $I^i \leq i$ for all $0 \leq i \leq n$.
- (2) In a minimal injective resolution $R \to J^{\bullet}$ in Mod- R^{op} , flat dim $J^i \leq i$ for all $0 \leq i \leq n$.
- (3) For any $1 \le i \le n+1$, any $X \in \text{mod-}R$ and any submodule M of $\text{Ext}_R^i(X, R) \in \text{mod-}R^{\text{op}}$ we have $\text{Ext}_{R^{\text{op}}}^j(M, R) = 0$ for all $0 \le j < i$.
- (4) For any $1 \le i \le n+1$, any $M \in \text{mod}-R^{\text{op}}$ and any submodule X of $\text{Ext}^{i}_{R^{\text{op}}}(M, R) \in \text{mod}-R$ we have $\text{Ext}^{j}_{R}(X, R) = 0$ for all $0 \le j < i$.

Definition 2 ([5]). Let R be a left and right noetherian ring. We say that R satisfies the Auslander condition if it satisfies the equivalent conditions in Proposition 1 for all $n \ge 0$, and that R is an Auslander-Gorenstein ring if it satisfies the Auslander condition

This is not in final form. The detailed version will be submitted for publication elsewhere.

and inj dim $R^{\text{op}} = \text{inj} \dim R < \infty$. Also, an Auslander-Gorenstein ring R is said to be Auslander-regular if gl dim $R < \infty$.

Remark 3. Let R be a left and right noetherian ring. Assume dom dim $R \ge 2$, i.e., the first two terms I^0 , I^1 in a minimal injective resolution $R \to I^{\bullet}$ in Mod-R are flat. It then follows by [7, Proposition 3.4] and [8, Corollary C] that R is left and right artinian.

Note that commutative Gorenstein rings are Auslander-Gorenstein (see [4]), and that if R is a left and right noetherian ring, and if inj dim $R^{\text{op}} < \infty$ and inj dim $R < \infty$, then inj dim $R^{\text{op}} =$ inj dim R (see e.g. [14, Lemma A]). Also, if R is a left and right noetherian ring then gl dim $R^{\text{op}} =$ gl dim R.

Lemma 4. For any $X, Y \in Mod-R$ we have a bifunctorial homomorphism

 $\xi_{X,Y}: X \otimes_R \operatorname{Hom}_R(Y,R) \to \operatorname{Hom}_R(Y,X), x \otimes f \mapsto (y \mapsto xf(y))$

and the following hold.

- (1) If either $X \in \mathcal{P}_R$ or $Y \in \mathcal{P}_R$ then $\xi_{X,Y}$ is an isomorphism.
- (2) If $\xi_{X,X}$ is an epimorphism then $X \in \mathcal{P}_R$.

Lemma 5 (Morita). Let A be an arbitrary ring. Then for any $V \in Mod-A$, setting $B = End_A(V)$ and $U = Hom_A(V, A)$, the following hold.

- (1) If $V_A \in \mathcal{P}_A$ then ${}_BB \in \operatorname{add}({}_BV)$.
- (2) If $A_A \in \operatorname{add}(V_A)$ then ${}_{B}V \in \mathcal{P}_{B^{\operatorname{op}}}$ with $A \xrightarrow{\sim} \operatorname{End}_{B^{\operatorname{op}}}(V)^{\operatorname{op}}$ canonically.
- (3) If $\operatorname{add}(V_A) = \mathcal{P}_A$ then $V \otimes_A U \cong B$ as B-bimodules and $U \otimes_B V \cong A$ as A-bimodules, so that we have equivalences

 $V \otimes_A - : \operatorname{Mod} A^{\operatorname{op}} \xrightarrow{\sim} \operatorname{Mod} B^{\operatorname{op}} and - \otimes_A U : \operatorname{Mod} A \xrightarrow{\sim} \operatorname{Mod} B.$

Definition 6. Let A, B be rings. If there exists a module $V \in \text{Mod-}A$ such that $\text{add}(V_A) = \mathcal{P}_A$ and $B \xrightarrow{\sim} \text{End}_A(V)$, then B is said to be Morita equivalent to A. According to Lemma 5(3), B is Morita equivalent to A if and only if A is Morita euvalent to B. So, we say that A, B are Morita equivalent (to each other) if one is Morita equivalent to the other.

Lemma 7. For any $X \in \text{mod-}R$ and any injective $E \in \text{Mod-}R^{\text{op}}$ we have a bifunctorial isomorphism

 $\zeta_{X,E}: X \otimes_R E \xrightarrow{\sim} \operatorname{Hom}_{R^{\operatorname{op}}}(\operatorname{Hom}_R(X,R), E), x \otimes a \mapsto (f \mapsto f(x)a).$

Recall that a projective resolution $P^{\bullet} \to X$ is said to be finite if the P^i are finitely generated.

Lemma 8. Let $E \in \text{Mod}-R^{\text{op}}$ be injective. For any $X \in \text{Mod}-R$ with a finite projective resolution we have $\text{Tor}_i^R(X, E) \cong \text{Hom}_{R^{\text{op}}}(\text{Ext}_R^i(X, R), E)$ for all $i \ge 0$. In particular, if R is right noetherian, the following hold.

(1) flat dim $_{R}E \leq inj \dim R$.

(2) If $_{R}E$ is an injective cogenerator then flat dim $_{R}E$ = inj dim R.

Lemma 9. Let $\phi : R \to A$ be a ring homomorphism. Then for any $X \in Mod-A$ and $Y \in Mod-R$ we have a bifunctorial isomomorphism

 $\eta_{X,Y}$: Hom_R $(X,Y) \xrightarrow{\sim}$ Hom_A $(X, Hom_R(A,Y)), f \mapsto (x \mapsto (a \mapsto f(xa))).$

In particular, if $I \in Mod-R$ is injective (resp., an injective cogenerator) then so is $Hom_R(A, I) \in Mod-A$.

Lemma 10. Let $\phi : R \to A$ be a ring homomorphism with $\operatorname{Ext}_{R}^{i}(A, R) = 0$ for all $i \geq 1$ and set $V = \operatorname{Hom}_{R}(A, R)$. Then inj dim $V_{A} \leq \operatorname{inj}$ dim R, where the equality holds if either ϕ is a split monomorphism of R-bimodules or ϕ is a split monomorphism in Mod- R^{op} and inj dim $R < \infty$.

Example 11. Let $R \to A$ be a ring homomorphism and set $\Gamma = \text{End}_R(A)$ with $\psi : A \to \Gamma, a \mapsto (x \mapsto ax)$. Then $\varepsilon \circ \psi = \text{id}_A$ with $\varepsilon : \Gamma \to A, \gamma \mapsto \gamma(1_A)$ and ψ is a split monomorphism of (A, R)-bimodules.

Definition 12. A module $X \in Mod-R$ is said to be torsionless (resp., reflexive) if the evaluation map

 $\varepsilon_X : X \to \operatorname{Hom}_{R^{\operatorname{op}}}(\operatorname{Hom}_R(X, R), R), x \mapsto (f \mapsto f(x))$

is a monomorphism (resp., an isomorphism).

Definition 13. A ring homomorphism $\phi : R \to A$ is said to be separable (resp., an epimorphism) if the multiplication map $\pi : A \otimes_R A \to A, a \otimes b \mapsto ab$ is a split epimorphism (resp., an isomorphism) of A-bimodules.

Example 14. Let $\Gamma = M_2(R)$ be the ring of 2×2 full matrices over a ring R and $A = T_2(R)$ the subring of Γ consisting of upper triangular matrices. Then the inclusion $A \to \Gamma$ is a ring epimorphism and the canonical ring homomorphism $R \to \Gamma, r \mapsto \text{diag}(r, r)$ is separable.

Lemma 15. Let $\phi : R \to A$ be a separable ring homomorphism. Assume either ${}_{R}A$ is flat or A_{R} is projective. Then for any $X, Y \in \text{Mod-}A$ we have a bifunctorial split monomorphism $\text{Ext}_{A}^{i}(X,Y) \to \text{Ext}_{R}^{i}(X,Y)$ for all $i \geq 0$ and hence gl dim $A \leq$ gl dim R. If $A_{R} \in \mathcal{P}_{R}$ then inj dim $A \leq$ inj dim R.

2. Frobenius ring homomorphisms

Throughout the rest of this note, we denote by \mathcal{G}_R the full subcategory of mod-R consisting of $X \in \text{mod-}R$ admitting a finite projective resolution and with $\text{Ext}_R^i(X, R) = 0$ for all $i \geq 1$. Obviously, we have $\mathcal{P}_R \subset \mathcal{G}_R \subset \text{mod-}R$. Note also that if R is right noetherian then every finitely generated $X \in \text{Mod-}R$ admits a finite projective resolution.

Throughout this section, we fix a ring homomorphism $\phi : R \to A$ and set $V = \text{Hom}_R(A, R)$ which is an (R, A)-bimodule.

Lemma 16. If $A_R \in \mathcal{G}_R$ then for any injective $E \in \text{Mod-}R^{\text{op}}$ the following hold.

(1) $\operatorname{Tor}_{i}^{R}(A, E) = 0$ for all $i \geq 1$.

(2) flat dim ${}_{A}A \otimes_{R} E \leq$ flat dim ${}_{R}E$.

- (3) If V_A is flat then ${}_AA \otimes_R E$ is injective.
- (4) Assume V_A is faithfully flat. If $_RE$ is an injective cogenerator then so is $_AA \otimes_R E$.

Corollary 17. If $A_R \in \mathcal{G}_R$ and V_A is flat then inj dim ${}_AA \otimes_R M \leq \text{inj dim }_RM$ for all $M \in \text{Mod-}R^{\text{op}}$.

Proposition 18 (cf. [9, Proposition 1.7(1)]). Assume $A_R \in \mathcal{G}_R$, $_RA$ is finitely generated and V_A is faithfully flat. If R is Auslander-Gorenstein then so is A.

In case A has been known to be left and right noetherian, in the proposition above we need not to assume ${}_{R}A$ is finitely generated.

As in Lemma 4, for any $X \in Mod-R$ we have a functorial homomorphism

$$\xi_X : X \otimes_R V \to \operatorname{Hom}_R(A, X), x \otimes v \mapsto (a \mapsto xv(a)).$$

Lemma 19. If $A_R \in \mathcal{G}_R$ then for any $X \in \text{Mod-}R$ with flat dim $X_R < \infty$ the following hold.

(1) $\operatorname{Tor}_{i}^{R}(X, V) = 0$ for all $i \geq 1$.

(2) ξ_X is an isomorphism.

(3) flat dim $\operatorname{Hom}_R(A, X)_A \leq \operatorname{flat} \operatorname{dim} X_R + \operatorname{flat} \operatorname{dim} V_A$.

Definition 20 (cf. [1] and [11, 12]). We call ϕ a Frobenius ring homomorphism if $A_R \in \mathcal{G}_R$ and $\operatorname{add}(V_A) = \mathcal{P}_A$ (cf. also Proposition 51 below). In case ϕ is injective, we identify Rwith $\phi(R) \subset A$ and call A a Frobenius extension of R.

Proposition 21. Assume R is right noetherian and ϕ is Frobenius. Then a ring homomorphism $\psi : A \to \Gamma$ is Frobenius if and only if so is $\psi \circ \phi$.

Remark 22. In the proposition above, the "only if" part holds without the assumption that R is right noetherian. Namely, if Γ_A admits a finite projective resolution $Q^{\bullet} \to \Gamma$ in Mod-A, and if every Q^i admits a finite projective resolution $P^{i\bullet} \to Q^i$ in Mod-R, then we have a double complex $P^{\bullet\bullet}$ over \mathcal{P}_R the total complex of which yields a finite projective resolution of Γ_R .

Theorem 23. Assume R is left and right noetherian. If ϕ is Frobenius then the following hold.

- (1) A is left and right noetherian.
- (2) If inj dim $R^{\text{op}} = \text{inj} \dim R = d$ then inj dim $A^{\text{op}} = \text{inj} \dim A \leq d$.
- (3) If R satisfies the Auslander condition then so does A.
- (4) If R is Auslander-Gorenstein then so is A.

In the theorem above, we do not know whether or not $_{R}A$ is finitely generated. Also, it may happen that inj dim A < d (see Example 26 below).

Throughout the rest of this section, we set $\Gamma = \operatorname{End}_{R^{\operatorname{op}}}(A)^{\operatorname{op}}$, which contains A as a subring via the injective ring homomorphism $A \to \Gamma, a \mapsto (x \mapsto xa)$, and set $U = \operatorname{Hom}_{R^{\operatorname{op}}}(A, R)$ and $\Delta = \operatorname{Hom}_{A}(\Gamma, A)$.

Lemma 24. If $_{R}A \in \mathcal{P}_{R^{\mathrm{op}}}$ then $U_{R} \in \mathcal{P}_{R}$ and the following hold.

- (1) $\Gamma \cong U \otimes_R A$ as Γ -bimodules. In particular, $\Gamma_A \in \mathcal{P}_A$.
- (2) $\Delta \cong A \otimes_R A$ as (A, Γ) -bimodules.
- (3) If $\operatorname{add}(U_R) = \operatorname{add}(A_R)$ then $\operatorname{add}(\Delta_{\Gamma}) = \mathcal{P}_{\Gamma}$ and hence Γ is a Frobenius extension of A.
- (4) If $\operatorname{add}(_{R}A) = \mathcal{P}_{R^{\operatorname{op}}}$ then $\operatorname{add}(\Gamma_{A}) = \mathcal{P}_{A}$.

Theorem 25. Assume $\operatorname{add}(_RA) = \mathcal{P}_{R^{\operatorname{op}}}$ and $\operatorname{add}(A_R) = \mathcal{P}_R$. Then the following hold.

- (1) If A is left and right noetherian then so is R.
- (2) If A is Auslander-Gorenstein then so is R.
- (3) If ϕ is Frobenius then inj dim A = inj dim R.

Example 26. Assume R is a commutative noetherian local ring and A is an R-algebra, i.e., Im ϕ is contained in the center of A, such that A is a free R-module of finite rank. Then Γ is a Frobenius extension of A and is Morita equivalent to R, so that if A is Auslander-Gorenstein then R has to be Gorenstein. However, even if A is Auslander-Gorenstein, it may happen that inj dim A > inj dim $\Gamma = \dim R$. For instance, consider the case where $A = T_2(R)$, the ring of 2×2 upper triangular matrices over R. Then A is an Auslander-Gorenstein ring with inj dim $A = \dim R + 1$. In fact, $V_A \notin \mathcal{P}_A$ and A is not a Frobenius extension of R.

3. Frobenius bimodules

In this section, we introduce the notion of Frobenius bimodules. If R is a subring of a ring A such that $A_R \in \mathcal{P}_R$ and $A \cong \operatorname{Hom}_R(A, R)$ as (R, A)-modules, then in [1] the ring extension A/R is said to be a Frobenius extension of first kind (cf. also [11, 12]). We will generalize this notion.

To begin with, we notice the following facts.

Proposition 27. Let $\phi : R \to A$ be a Frobenius and separable ring homomorphism with $A_R \in \mathcal{P}_R$. If R is Auslander-regular then so is A.

Proposition 28. Let V be an (A, R)-bimodule with $_AV \in \mathcal{P}_{A^{\mathrm{op}}}$ and set $\Gamma = \operatorname{End}_{A^{\mathrm{op}}}(V)^{\mathrm{op}}$ with $R \to \Gamma, r \mapsto (v \mapsto vr)$. Then the following hold.

(1) $\Gamma_R \in \operatorname{add}(V_R)$

(2) If $\operatorname{add}(\operatorname{Hom}_R(V,R)_A) = \operatorname{add}(\operatorname{Hom}_{A^{\operatorname{op}}}(V,A)_A)$ then $\operatorname{add}(\operatorname{Hom}_R(\Gamma,R)_{\Gamma}) = \mathcal{P}_{\Gamma}$.

Definition 29. An (A, R)-bimodule V is said to be Frobenius if $V_R \in \mathcal{P}_R$, $_AV \in \mathcal{P}_{A^{\text{op}}}$ and $\text{Hom}_R(V, R) \cong \text{Hom}_{A^{\text{op}}}(V, A)$ as (R, A)-bimodules.

Example 30. Let $V \in Mod$ -A with $add(V_A) = \mathcal{P}_A$ and set $B = End_A(V)$. It then follows by Lemma 5 that V is a Frobenius (B, A)-bimodule.

Proposition 31. Let V be an (A, R)-bimodule and Δ a (Γ, A) -bimodule. If both V and Δ are Frobenius then so is $\Delta \otimes_A V$.

Lemma 32. Let V be a Frobenius (A, R)-bimodule and set $\Gamma = \operatorname{End}_{A^{\operatorname{op}}}(V)^{\operatorname{op}}$ and $\psi : R \to \Gamma, r \mapsto (v \mapsto vr)$. Then the following hold.

- (1) $\operatorname{Hom}_{R}(V, R)$ is a Frobenius (R, A)-bimodule.
- (2) Γ is a Frobenius (Γ, R) -bimodule.

Lemma 33. For any ring homomorphism $\phi : R \to A$ the following are equivalent.

- (1) A is a Frobenius (A, R)-bimodule.
- (2) A is a Frobenius (R, A)-bimodule.

Throughout the rest of this section, we fix a ring homomorphism $\phi : R \to A$ and set $V = \operatorname{Hom}_R(A, R), \Gamma = \operatorname{End}_{R^{\operatorname{op}}}(A)^{\operatorname{op}}$ and $\psi : A \to \Gamma, a \mapsto (x \mapsto xa)$.

Proposition 34. If $A_R \in \mathcal{P}_R$ and ${}_AA \cong {}_AV$ then we have $\rho : \operatorname{End}_R(A) \xrightarrow{\sim} \Gamma$ such that $\psi = \rho \circ \psi'$ with $\psi' : A \to \operatorname{End}_R(A), a \mapsto (x \mapsto ax)$.

Theorem 35. If A is a Frobenius (A, R)-bimodule then the following hold.

- (1) ϕ is Frobenius.
- (2) Γ is a Frobenius (Γ, A) -bimodule.
- (3) If $\operatorname{add}(_{R}A) = \mathcal{P}_{R^{\operatorname{op}}}$ then $\operatorname{add}(_{A}\Gamma) = \mathcal{P}_{A^{\operatorname{op}}}$.

Corollary 36. Let $\phi_0 : A_0 \to A_1$ be a ring homomorphism and set $A_{i+1} = \operatorname{End}_{A_{i-1}^{\operatorname{op}}}(A_i)^{\operatorname{op}}$ and $\phi_i : A_i \to A_{i+1}, a \mapsto (x \mapsto xa)$ for $i \ge 1$ inductively. If A_1 is a Frobenius (A_1, A_0) bimodule then A_i is a Frobenius (A_i, A_{i-1}) -bimodule for all $i \ge 1$.

In the following, we denote by $\pi : A \otimes_R A \to A, a \otimes b \mapsto ab$ the multiplication map. Note that ϕ is separable if and only if there exists $\delta \in A \otimes_R A$ such that $\pi(\delta) = 1_A$ and $a\delta = \delta a$ for all $a \in A$.

Proposition 37. The following hold.

- (1) If ϕ is separable then ψ is a split monomorphism of A-bimodules.
- (2) If $_{A}A \otimes_{R} A$ is reflexive, and if ψ is a split monomorphism of A-bimodules, then ϕ is separable.

Lemma 38. Assume A is a Frobenius (A, R)-bimodule with $\varphi : A \xrightarrow{\sim} V$ an isomorphism of (R, A)-bimodules. Then $\tau = \varphi(1_A) : A \to R$ is a homomorphism of R-bimodules and the following hold.

- (1) $\varphi': A \xrightarrow{\sim} \operatorname{Hom}_{R^{\operatorname{op}}}(A, R), a \mapsto a\tau \text{ as } (A, R) \text{-bimodules.}$
- (2) $\xi : A \otimes_R A \xrightarrow{\sim} \Gamma, a \otimes b \mapsto (x \mapsto \tau(xa)b)$ as A-bimodules.
- (3) $\xi' : A \otimes_R A \xrightarrow{\sim} \operatorname{End}_R(A), a \otimes b \mapsto (x \mapsto a\tau(bx))$ as A-bimodules.
- (4) $\xi = \rho \circ \xi'$.

Theorem 39. Assume A is a Frobenius (A, R)-bimodule. Let $\varphi : A \xrightarrow{\sim} V$ be an isomorphism of (R, A)-bimodules and assume $\tau = \varphi(1_A) : A \to R$ is a split epimorphism of R-bimodules. Then the following hold.

- (1) Γ is Morita equivalent to R.
- (2) ψ is separable.
- (3) If A is Auslander-regular then so is R.

Example 40. Consider the case where R is a commutative field and $A = R[t]/(t^2)$. Then, setting $\tau : A \to R, r_0+r_1t \mapsto r_1$, we have $A \xrightarrow{\sim} V, r \mapsto r\tau$ as (R, A)-bimodules. Thus A is a Frobenius (A, R)-bimodule. Since the enveloping algebra $A^e = A^{\text{op}} \otimes_R A \cong R[x, y]/(x^2, y^2)$ is local, and since $\dim_R A^e \neq \dim_R A, \pi$ does not split in Mod- A^e , i.e., ϕ is not separable. On the other hand, since τ is a split epimorphism of R-bimodules, ψ is separable.

4. Double centralizer

Throughout this section, we fix a finitely generated projective module $P \in \mathcal{P}_R$ and set $A = \operatorname{End}_R(P)$ and $\Gamma = \operatorname{End}_{A^{\operatorname{op}}}(P)^{\operatorname{op}}$ with $\phi : R \to \Gamma, r \mapsto (x \mapsto xr)$ the canonical ring homomorphism. We will provide a sufficient condition for ϕ to be a Frobenius ring epimorphism with $\Gamma_R \in \mathcal{P}_R$. We refer to [13] for general theory of localization in module categories.

In the following, we set $Q = \operatorname{Hom}_R(P, R)$ and $V = Q \otimes_A P$. Note that by Lemma 5(1) $_AA \in \operatorname{add}(_AP)$ and $A_A \in \operatorname{add}(Q_A)$ and that by Lemma 5(2) $P_{\Gamma} \in \mathcal{P}_{\Gamma}$ with $A \xrightarrow{\sim} \operatorname{End}_{\Gamma}(P)$ canonically. Also, by Lemma 4(1) $\operatorname{Hom}_R(P, -) \cong - \otimes_R Q$ and $\operatorname{Hom}_{R^{\operatorname{op}}}(Q, -) \cong P \otimes_R -$.

Lemma 41. The following hold.

- (1) ${}_{A}A \in \operatorname{add}({}_{A}P) \text{ and } P_{\Gamma} \in \mathcal{P}_{\Gamma} \text{ with } A \xrightarrow{\sim} \operatorname{End}_{\Gamma}(P) \text{ canonically, so that } \Gamma_{\Gamma} \in \operatorname{add}(P_{\Gamma}) \text{ if and only if } {}_{A}P \in \mathcal{P}_{A^{\operatorname{op}}}.$
- (2) $_{R}Q \in \mathcal{P}_{R^{\mathrm{op}}}$ with $P_{R} \xrightarrow{\sim} \operatorname{Hom}_{R^{\mathrm{op}}}(Q, R)_{R}, x \mapsto (f \mapsto f(x))$ and $A \xrightarrow{\sim} \operatorname{End}_{R^{\mathrm{op}}}(Q)^{\mathrm{op}}$ canonically, so that $A_{A} \in \operatorname{add}(Q_{A})$ and $P_{\Gamma} \in \operatorname{add}(V_{\Gamma})$.
- (3) $P \otimes_R Q \cong A$ as A-bimodules, so that $P \otimes_R V \cong P$ as (A, Γ) -bimodules and $V \otimes_R Q \cong Q$ as (R, A)-bimodules. In particular, $V \otimes_R V \cong V$ as (R, Γ) -bimodules.
- (4) $\operatorname{Hom}_{R^{\operatorname{op}}}(V, R) \cong \Gamma$ as (Γ, R) -bimodules, so that $_{R}V \in \mathcal{P}_{R^{\operatorname{op}}}$ if and only if $\Gamma_{R} \in \mathcal{P}_{R}$ with $V \xrightarrow{\sim} \operatorname{Hom}_{R}(\Gamma, R)$ as (R, Γ) -bimodules.

Lemma 42. The following hold.

- (1) $(P \otimes_R -) \circ (Q \otimes_A -) \cong \operatorname{Hom}_{R^{\operatorname{op}}}(Q, -) \circ \operatorname{Hom}_{A^{\operatorname{op}}}(P, -) \cong \mathbf{1}_{\operatorname{Mod}\text{-}A^{\operatorname{op}}}$, so that both ${}_{R}Q \otimes_{A} and \operatorname{Hom}_{A^{\operatorname{op}}}({}_{A}P_{R}, -)$ are fully faithful.
- (2) $\Gamma \xrightarrow{\sim} \operatorname{End}_{R^{\operatorname{op}}}(V)^{\operatorname{op}}$ canonically, so that if $_{R}V \in \mathcal{P}_{R^{\operatorname{op}}}$ then $\Gamma_{\Gamma} \in \operatorname{add}(V_{\Gamma})$.
- (3) $\Gamma \xrightarrow{\sim} \operatorname{End}_{R^{\operatorname{op}}}(\Gamma)^{\operatorname{op}}$ canonically, so that if $_{R}R \in \operatorname{add}(_{R}\Gamma)$ then $\phi : R \xrightarrow{\sim} \Gamma$.

Proposition 43. If $_{\Gamma}\Gamma \otimes_{R} \Gamma$ is torsionless then ϕ is a ring epimorphism.

Lemma 44. The following hold.

(1) For any $M \in \text{Mod}\text{-}R^{\text{op}}$ we have a functorial homomorphism in Mod- Γ^{op}

 $\omega_M: \Gamma \otimes_R M \to \operatorname{Hom}_{A^{\operatorname{op}}}(P, P \otimes_R M), \gamma \otimes m \mapsto (x \mapsto x\gamma \otimes m)$

which is an isomorphism if either $_{R}V \in \mathcal{P}_{R^{\text{op}}}$ or $_{R}M \in \mathcal{P}_{R^{\text{op}}}$.

- (2) $P \otimes_R \Gamma \xrightarrow{\sim} P, x \otimes \gamma \mapsto x\gamma$, so that $\operatorname{Hom}_{\Gamma}(P, -) \cong \operatorname{Hom}_R(P, -)$ on $\operatorname{Mod} \Gamma$ and $P \otimes_R \cong P \otimes_{\Gamma} -$ on $\operatorname{Mod} \Gamma^{\operatorname{op}}$. In particular, if either $_RV \in \mathcal{P}_{R^{\operatorname{op}}}$ or $_R\Gamma \in \mathcal{P}_{R^{\operatorname{op}}}$ then ϕ is a ring epimorphism.
- (3) $\operatorname{Hom}_{A^{\operatorname{op}}}(P, A) \cong \operatorname{Hom}_{\Gamma}(P, \Gamma) \cong \Gamma \otimes_{R} Q$ as (Γ, A) -bimodules, so that if $_{A}P \in \mathcal{P}_{A^{\operatorname{op}}}$ then P is a Frobenius (A, Γ) -bimodule.

Theorem 45. If $_{R}V \in \mathcal{P}_{R^{op}}$ then the following hold.

- (1) ϕ is a ring epimorphism with $\Gamma_R \in \mathcal{P}_R$, so that inj dim $\Gamma \leq$ inj dim R and gl dim $\Gamma \leq$ gl dim R.
- (2) If $V_{\Gamma} \in \mathcal{P}_{\Gamma}$ then ϕ is Frobenius.

Lemma 46. Let $\varepsilon: V \to R, f \otimes x \mapsto f(x)$ and $\mathfrak{a} = \operatorname{Im} \varepsilon$. Then the following hold.

- (1) $\mathfrak{a}^2 = \mathfrak{a}$ and $\operatorname{Ker}(-\otimes_R Q) = \operatorname{Mod}_{-}(R/\mathfrak{a}).$
- (2) $_{R}V \in \mathcal{P}_{R^{\mathrm{op}}}$ if and only if $_{A}P \in \mathcal{P}_{A^{\mathrm{op}}}$.

Lemma 47. If $_{A}P \in \mathcal{P}_{A^{\mathrm{op}}}$ then the following hold.

- (1) $\operatorname{Hom}_R(_{\Gamma}\Gamma_R, -) \cong \operatorname{Hom}_R(_{A}P_R, -) \otimes_A P_{\Gamma}.$
- (2) $\otimes_A P_{\Gamma} : \operatorname{Mod} A \xrightarrow{\sim} \operatorname{Mod} \Gamma.$

(3) $V_{\Gamma} \in \mathcal{P}_{\Gamma}$ if and only if $Q_A \in \mathcal{P}_A$.

Proposition 48. The following are equivalent.

- (1) $_{R}V \in \mathcal{P}_{R^{\mathrm{op}}}$ and $V_{\Gamma} \in \mathcal{P}_{\Gamma}$.
- (2) $_{A}P \in \mathcal{P}_{A^{\mathrm{op}}} and Q_{A} \in \mathcal{P}_{A}.$

Example 49. (1) Let V be an (A, B)-bimodule with $_AV \in \mathcal{P}_{A^{op}}$ and set

$$R = \left(\begin{array}{cc} A & V \\ 0 & B \end{array}\right) \quad \text{and} \quad e = \left(\begin{array}{cc} 1_A & 0 \\ 0 & 0 \end{array}\right)$$

Then, setting P = eR, we have $A \cong eRe$ and $Q \cong Re$, so that ${}_{A}P \cong {}_{A}A \oplus {}_{A}V \in \mathcal{P}_{A^{\mathrm{op}}}$ and $Q_A \cong A_A \in \mathcal{P}_A$.

(2) Let A be a commutative ring and R an A-algebra with $R_A \in \mathcal{P}_A$. Assume R contains an idempotent e with eRe = Ae. Then, setting P = eR, we have $A \cong eRe$ and $Q \cong Re$, so that $_AP \in \mathcal{P}_{A^{\text{op}}}$ and $Q_A \in \mathcal{P}_A$.

5. Gorenstein projectives

In this final section, we deal with some questions in homological algebra which are still open. We denote by \mathcal{G}_R^0 the full subcategory of \mathcal{G}_R consisting of $X \in \mathcal{G}_R$ with $\operatorname{Hom}_R(X, R) = 0$. The generalized Nakayama conjecture asserts that if R is right noetherian then \mathcal{G}_R^0 would contain no simple module (see [3] for details).

To begin with, we recall the notion of Gorenstein projective modules.

Definition 50 ([6]). A module $X \in \text{mod-}R$ is said to be Gorenstein projective if it is reflexive with $X \in \mathcal{G}_R$ and $\text{Hom}_R(X, R) \in \mathcal{G}_{R^{\text{op}}}$, i.e., there exists a complex P^{\bullet} over \mathcal{P}_R such that $Z'^0(P^{\bullet}) \cong X$ and $\text{H}^i(P^{\bullet}) = \text{H}^{-i}(\text{Hom}^{\bullet}_R(P^{\bullet}, R)) = 0$ for all $i \in \mathbb{Z}$.

It is obvious that if X_R is reflexive (resp., Gorenstein projective) then so is $_R$ Hom $_R(X, R)$. Thus the notion of Frobenius ring homomorphisms could be slightly modified to be symmetric in the following sense.

Proposition 51. Let $\phi : R \to A$ be a ring homomorphism and set $V = \operatorname{Hom}_R(A, R)$, $B = \operatorname{End}_A(V)$ and $\psi : R \to B, r \mapsto (v \mapsto rv)$. Then the following hold.

- (1) If A_R is reflexive (resp., Gorenstein projective) and $V_A \in \mathcal{P}_A$ then $_RB$ is reflexive (resp., Gorenstein projective) and Hom_{R^{op}} $(B, R) \cong V$ as (B, R)-bimodules.
- (2) If $\operatorname{add}(V_A) = \mathcal{P}_A$ then $A \xrightarrow{\sim} \operatorname{End}_{B^{\operatorname{op}}}(V)^{\operatorname{op}}$ canonically and $\operatorname{add}(_BV) = \mathcal{P}_{B^{\operatorname{op}}}$.
- (3) If $A \cong V$ as (R, A)-bimodules then there exists a ring isomorphism $\sigma : A \xrightarrow{\sim} B$ such that $\psi = \sigma \circ \phi$.

Throughout the rest of this section, we fix a complete set of non-isomorphic simple modules $\{S_{\lambda}\}_{\lambda \in \Lambda}$ in Mod- R^{op} and for each $\lambda \in \Lambda$ we denote by $E_{\lambda} = E_{R^{\text{op}}}(S_{\lambda})$ the injective envelope of S_{λ} in Mod- R^{op} .

Lemma 52. For any $M \in \text{Mod}\text{-}R^{\text{op}}$ with $\text{Hom}_{R^{\text{op}}}(M, E_{\lambda}) = 0$ for all $\lambda \in \Lambda$ we have M = 0, i.e., $\prod_{\lambda \in \Lambda} E_{\lambda} \in \text{Mod}\text{-}R^{\text{op}}$ is an injective cogenerator.

Corollary 53. For any $X \in \text{mod-}R$ the following hold.

(1) $\operatorname{Hom}_R(X, R) = 0$ if and only if $X \otimes_R E_{\lambda} = 0$ for all $\lambda \in \Lambda$.

(2) If R is right noetherian then, for any $i \ge 0$, $\operatorname{Ext}_{R}^{i}(X, R) = 0$ if and only if $\operatorname{Tor}_{i}^{R}(X, E_{\lambda}) = 0$ for all $\lambda \in \Lambda$.

Lemma 54 ([10, Corollary A.2]). Assume R is left and right noetherian. If every $X \in \mathcal{G}_R$ is torsionless then \mathcal{G}_R consists only of Gorenstein projectives.

Throughout the rest of this section, we fix a ring homomorphism $\phi : R \to A$ and set $V = \operatorname{Hom}_R(A, R)$.

Proposition 55. If $A_R \in \text{mod-}R$ then we have

flat dim $V_A = \sup\{ \inf A \otimes_R E_\lambda \mid \lambda \in \Lambda \}.$

Example 56. If $A = T_2(R)$, the ring of 2×2 upper triangular matrices over R, and $\phi: R \to A, r \mapsto \text{diag}(r, r)$, then $A_R \in \mathcal{P}_R$ and proj dim $V_A = 1$.

In the following, we assume $A_R \in \mathcal{G}_R$ and inj dim ${}_AA \otimes_R E_\lambda < \infty$ for all $\lambda \in \Lambda$. In addition, to ensure that every finitely generated $X \in \text{Mod-}R$ admits a finite projective resolution, we assume R is right noetherian. Note that A also is right noetherian.

Lemma 57. For any $X \in \mathcal{G}_A$ the following hold.

(1) $X_R \in \mathcal{G}_R$. (2) If $X_A \in \mathcal{G}_A^0$ then $X_R \in \mathcal{G}_R^0$. (3) If X_R is torsionless then so is X_A .

Theorem 58. The following hold.

- (1) If $\mathcal{G}_R^0 = \{0\}$ then $\mathcal{G}_A^0 = \{0\}$.
- (2) Assume X_R is semisimple for all simple $X \in Mod-A$. If the generalized Nakayama conjecture holds true for R then so does for A.
- (3) Assume both R and A are left and right noetherian. If \mathcal{G}_R consists only of Gorenstein projectives then so does \mathcal{G}_A .

Remark 59 ([2]). Let $X \in \text{mod-}R$ with $P^{\bullet} \to X$ a finite projective resolution and set $M_n = \mathbb{Z}^{\prime n}(\text{Hom}^{\bullet}_R(P^{\bullet}, R))$ for $n \geq 1$. Then for any $n \geq 1$, if $\text{Ext}^i_R(X, R) = 0$ for $1 \leq i < n$, the following hold.

- (1) $\operatorname{Ext}_{R^{\operatorname{op}}}^{i}(M_{n}, R) = 0$ for $1 \leq i < n$ and $\operatorname{Ext}_{R^{\operatorname{op}}}^{n}(M_{n}, R) \cong \operatorname{Ext}_{R^{\operatorname{op}}}^{1}(M_{1}, R).$
- (2) If $\operatorname{Hom}_R(X, R) = 0$ then $X \cong \operatorname{Ext}_{R^{\operatorname{op}}}^n(M_n, R)$ with proj dim $M_n \leq n$.
- (3) X is torsionless if and only if $\operatorname{Ext}_{R^{\operatorname{op}}}^{n}(M_{n}, R) = 0.$

Remark 60. (1) J.-I. Miyachi has pointed out that in general \mathcal{G}_R may contain a module which is neither simple nor torsionless (see [10, Example A.3]).

(2) For a minimal injective resolution $R \to E^{\bullet}$ in Mod-R, it is possible that $\bigoplus_{k=0}^{\infty} E^k$ is an injective cogenerator but $\bigoplus_{k=0}^{n} E^k$ is not for any $n \ge 0$. For instance, if R is a commutative Gorenstein ring of infinite dimension, then for any $n \ge 0$ there exists a maximal ideal \mathfrak{m} of height d > n and we have $\operatorname{Ext}_{R}^{i}(R/\mathfrak{m}, R) = 0$ for $0 \le i < d$ and $\operatorname{Ext}_{R}^{d}(R/\mathfrak{m}, R) \ne 0$ (see [4] for details).

References

- H. Abe and M. Hoshino, Frobenius extensions and tilting complexes, Algebras and Representation Theory 11(3), 215–232 (2008).
- [2] M. Auslander and M. Bridger, Stable module theory, Mem. Amer. Math. Soc., 94, Amer. Math. Soc., Providence, R.I., 1969.
- [3] M. Auslander and I. Reiten, On a generalized version of the Nakayama conjecture, Proc. Am. Math. Soc. 52(1975), 69-74.
- [4] H. Bass, On the ubiquity of Gorenstein rings, Math. Z. 82 (1963), 8–28.
- [5] J. -E. Björk, The Auslander condition on noetherian rings, in: Séminaire d'Algèbre Paul Dubreil et Marie-Paul Malliavin, 39ème Année (Paris, 1987/1988), 137-173, Lecture Notes in Math., 1404, Springer, Berlin, 1989.
- [6] L. W. Christensen, A. Frankild and H. Holm, On Gorenstein projective, injective and flat dimensions a functorial description with applications, J. Algebra **302** (2006), no. 1, 231–279.
- [7] M. Hoshino, On dominant dimension of noetherian rings, Osaka J. Math. 26(2) (1989), 275-280.
- [8] _____, Localization in abelian categories and double dual functors, Arch. Math. 57 (1991), 345-351.
- [9] M. Hoshino, N. Kameyama and H. Koga, Group-graded and group-bigraded rings, J. Algebra Appl. 14(7) (2015) 1550100 (17 pages). DOI:10.1142/S0219498815501005
- [10] M. Hoshino and H. Koga, Zaks' lemma for coherent rings, Algebras and Representation Theory 16 (2013), 1647–1660.
- [11] T. Nakayama and T. Tsuzuku, On Frobenius extensions I, Nagoya Math. J. 17 (1960), 89–110.
- [12] _____, On Frobenius extensions II, Nagoya Math. J. 19 (1961), 127–148.
- [13] N. Popescu, Abelian categories with applications to rings and modules, London, New York, Academic Press, 1973.
- [14] A. Zaks, Injective dimension of semi-primary rings, J. Algebra 13 (1969), 73–86.

INSTITUTE OF MATHEMATICS UNIVERSITY OF TSUKUBA IBARAKI, 305-8571 JAPAN Email address: hoshino@math.tsukuba.ac.jp

DEPARTMENT OF GENERAL EDUCATION SALESIAN POLYTECHNIC YAMANASHI UNIVERSITY TOKYO, 194-0212 JAPAN *Email address*: n-kameyama@salesio-sp.ac.jp

SCHOOL OF INFORMATION ENVIRONMENT TOKYO DENKI UNIVERSITY CHIBA, 270-1382 JAPAN Email address: koga@mail.dendai.ac.jp