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Abstract. We introduce the notion of Frobenius ring homomorphisms and show that if
R −→ A is a Frobenius ring homomorphism then A inherits various homological properties
from R. Especially, for a Frobenius ring homomorphism R −→ A we show that if R is an
Auslander-Gorenstein ring then so is A with inj dim A ≤ inj dim R.

1. Preliminaries

Let R be a ring. We denote by Mod-R the category of right R-modules and by mod-R
the full subcategory of Mod-R consisting of finitely presented modules. We denote by PR

the full subcategory of mod-R consisting of projective modules. We denote by Rop the
opposite ring of R and consider left R-modules as right Rop-modules. In particular, we
denote by HomR(−,−) (resp., HomRop(−,−)) the set of homomorphisms in Mod-R (resp.,
Mod-Rop) and by gl dim R (resp., gl dim Rop) the right (resp., left) global dimension of
R. Similarly, we denote by inj dim R (resp., inj dim Rop) the injective dimension of the
right (resp., left) R-module R. Sometimes, we use the notation XR (resp., RX) to stress
that the module X considered is a right (resp., left) R-module. For each complex X• we
denote by Zi(X•), Z′i(X•) and Hi(X•) the ith cycle, ith cocycle and the ith cohomology,
respectively. We denote by Hom•(−,−) (resp., −⊗• −) the hom (resp., tensor) complex.
Finally, for a module X ∈ Mod-R we denote by add(X) the full subcategory of Mod-A
consisting of direct summands of finite direct sums of copies of X.

In this section, we recall several basic facts which are well-known.

Proposition 1 (Auslander). Let R be a left and right noetherian ring. Then for any
n ≥ 0 the following are equivalent:

(1) In a minimal injective resolution R → I• in Mod-R, flat dim I i ≤ i for all 0 ≤
i ≤ n.

(2) In a minimal injective resolution R → J• in Mod-Rop, flat dim J i ≤ i for all
0 ≤ i ≤ n.

(3) For any 1 ≤ i ≤ n + 1, any X ∈ mod-R and any submodule M of ExtiR(X,R) ∈
mod-Rop we have ExtjRop(M,R) = 0 for all 0 ≤ j < i.

(4) For any 1 ≤ i ≤ n+1, anyM ∈ mod-Rop and any submodule X of ExtiRop(M,R) ∈
mod-R we have ExtjR(X,R) = 0 for all 0 ≤ j < i.

Definition 2 ([5]). Let R be a left and right noetherian ring. We say that R satisfies
the Auslander condition if it satisfies the equivalent conditions in Proposition 1 for all
n ≥ 0, and that R is an Auslander-Gorenstein ring if it satisfies the Auslander condition
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and inj dim Rop = inj dim R < ∞. Also, an Auslander-Gorenstein ring R is said to be
Auslander-regular if gl dim R <∞.

Remark 3. Let R be a left and right noetherian ring. Assume dom dim R ≥ 2, i.e., the
first two terms I0, I1 in a minimal injective resolution R → I• in Mod-R are flat. It then
follows by [7, Proposition 3.4] and [8, Corollary C] that R is left and right artinian.

Note that commutative Gorenstein rings are Auslander-Gorenstein (see [4]), and that
if R is a left and right noetherian ring, and if inj dim Rop <∞ and inj dim R <∞, then
inj dim Rop = inj dim R (see e.g. [14, Lemma A]). Also, if R is a left and right noetherian
ring then gl dim Rop = gl dim R.

Lemma 4. For any X,Y ∈ Mod-R we have a bifunctorial homomorphism

ξX,Y : X ⊗R HomR(Y,R) −→ HomR(Y,X), x⊗ f 7→ (y 7→ xf(y))

and the following hold.

(1) If either X ∈ PR or Y ∈ PR then ξX,Y is an isomorphism.
(2) If ξX,X is an epimorphism then X ∈ PR.

Lemma 5 (Morita). Let A be an arbitrary ring. Then for any V ∈ Mod-A, setting
B = EndA(V ) and U = HomA(V,A), the following hold.

(1) If VA ∈ PA then BB ∈ add(BV ).

(2) If AA ∈ add(VA) then BV ∈ PBop with A
∼→ EndBop(V )op canonically.

(3) If add(VA) = PA then V ⊗A U ∼= B as B-bimodules and U ⊗B V ∼= A as A-
bimodules, so that we have equivalences

V ⊗A − : Mod-Aop ∼−→ Mod-Bop and −⊗AU : Mod-A
∼−→ Mod-B.

Definition 6. LetA,B be rings. If there exists a module V ∈ Mod-A such that add(VA) =

PA and B
∼→ EndA(V ), then B is said to be Morita equivalent to A. According to Lemma

5(3), B is Morita equivalent to A if and only if A is Morita euivalent to B. So, we say
that A,B are Morita equivalent (to each other) if one is Morita equivalent to the other.

Lemma 7. For any X ∈ mod-R and any injective E ∈ Mod-Rop we have a bifunctorial
isomorphism

ζX,E : X ⊗R E
∼−→ HomRop(HomR(X,R), E), x⊗ a 7→ (f 7→ f(x)a).

Recall that a projective resolution P • → X is said to be finite if the P i are finitely
generated.

Lemma 8. Let E ∈ Mod-Rop be injective. For any X ∈ Mod-R with a finite projective
resolution we have TorRi (X,E) ∼= HomRop(ExtiR(X,R), E) for all i ≥ 0. In particular, if
R is right noetherian, the following hold.

(1) flat dim RE ≤ inj dim R.
(2) If RE is an injective cogenerator then flat dim RE = inj dim R.

Lemma 9. Let ϕ : R → A be a ring homomorphism. Then for any X ∈ Mod-A and
Y ∈ Mod-R we have a bifunctorial isomomorphism

ηX,Y : HomR(X,Y )
∼−→ HomA(X,HomR(A, Y )), f 7→ (x 7→ (a 7→ f(xa))).



In particular, if I ∈ Mod-R is injective (resp., an injective cogenerator) then so is
HomR(A, I) ∈ Mod-A.

Lemma 10. Let ϕ : R −→ A be a ring homomorphism with ExtiR(A,R) = 0 for all i ≥ 1
and set V = HomR(A,R). Then inj dim VA ≤ inj dim R, where the equality holds if either
ϕ is a split monomorphism of R-bimodules or ϕ is a split monomorphism in Mod-Rop and
inj dim R <∞.

Example 11. Let R −→ A be a ring homomorphism and set Γ = EndR(A) with ψ :
A −→ Γ, a 7→ (x 7→ ax). Then ε ◦ ψ = idA with ε : Γ −→ A, γ 7→ γ(1A) and ψ is a split
monomorphism of (A,R)-bimodules.

Definition 12. A module X ∈ Mod-R is said to be torsionless (resp., reflexive) if the
evaluation map

εX : X −→ HomRop(HomR(X,R), R), x 7→ (f 7→ f(x))

is a monomorphism (resp., an isomorphism).

Definition 13. A ring homomorphism ϕ : R −→ A is said to be separable (resp., an
epimorphism) if the multiplication map π : A⊗RA −→ A, a⊗b 7→ ab is a split epimorphism
(resp., an isomorphism) of A-bimodules.

Example 14. Let Γ = M2(R) be the ring of 2 × 2 full matrices over a ring R and A =
T2(R) the subring of Γ consisting of upper triangular matrices. Then the inclusion A −→ Γ
is a ring epimorphism and the canonical ring homomorphism R −→ Γ, r 7→ diag(r, r) is
separable.

Lemma 15. Let ϕ : R −→ A be a separable ring homomorphism. Assume either RA
is flat or AR is projective. Then for any X,Y ∈ Mod-A we have a bifunctorial split
monomorphism ExtiA(X,Y ) −→ ExtiR(X,Y ) for all i ≥ 0 and hence gl dim A ≤ gl dim R.
If AR ∈ PR then inj dim A ≤ inj dim R.

2. Frobenius ring homomorphisms

Throughout the rest of this note, we denote by GR the full subcategory of mod-R
consisting ofX ∈ mod-R admitting a finite projective resolution and with ExtiR(X,R) = 0
for all i ≥ 1. Obviously, we have PR ⊂ GR ⊂ mod-R. Note also that if R is right
noetherian then every finitely generated X ∈ Mod-R admits a finite projective resolution.
Throughout this section, we fix a ring homomorphism ϕ : R → A and set V =

HomR(A,R) which is an (R,A)-bimodule.

Lemma 16. If AR ∈ GR then for any injective E ∈ Mod-Rop the following hold.

(1) TorRi (A,E) = 0 for all i ≥ 1.
(2) flat dim AA⊗R E ≤ flat dim RE.
(3) If VA is flat then AA⊗R E is injective.
(4) Assume VA is faithfully flat. If RE is an injective cogenerator then so is AA⊗RE.

Corollary 17. If AR ∈ GR and VA is flat then inj dim AA ⊗R M ≤ inj dim RM for all
M ∈ Mod-Rop.



Proposition 18 (cf. [9, Proposition 1.7(1)]). Assume AR ∈ GR, RA is finitely generated
and VA is faithfully flat. If R is Auslander-Gorenstein then so is A.

In case A has been known to be left and right noetherian, in the proposition above we
need not to assume RA is finitely generated.

As in Lemma 4, for any X ∈ Mod-R we have a functorial homomorphism

ξX : X ⊗R V −→ HomR(A,X), x⊗ v 7→ (a 7→ xv(a)).

Lemma 19. If AR ∈ GR then for any X ∈ Mod-R with flat dim XR < ∞ the following
hold.

(1) TorRi (X,V ) = 0 for all i ≥ 1.
(2) ξX is an isomorphism.
(3) flat dim HomR(A,X)A ≤ flat dim XR + flat dim VA.

Definition 20 (cf. [1] and [11, 12]). We call ϕ a Frobenius ring homomorphism if AR ∈ GR

and add(VA) = PA (cf. also Proposition 51 below). In case ϕ is injective, we identify R
with ϕ(R) ⊂ A and call A a Frobenius extension of R.

Proposition 21. Assume R is right noetherian and ϕ is Frobenius. Then a ring homo-
morphism ψ : A→ Γ is Frobenius if and only if so is ψ ◦ ϕ.

Remark 22. In the proposition above, the ”only if” part holds without the assumption
that R is right noetherian. Namely, if ΓA admits a finite projective resolution Q• → Γ in
Mod-A, and if every Qi admits a finite projective resolution P i• → Qi in Mod-R, then we
have a double complex P •• over PR the total complex of which yields a finite projective
resolution of ΓR.

Theorem 23. Assume R is left and right noetherian. If ϕ is Frobenius then the following
hold.

(1) A is left and right noetherian.
(2) If inj dim Rop = inj dim R = d then inj dim Aop = inj dim A ≤ d.
(3) If R satisfies the Auslander condition then so does A.
(4) If R is Auslander-Gorenstein then so is A.

In the theorem above, we do not know whether or not RA is finitely generated. Also,
it may happen that inj dim A < d (see Example 26 below).
Throughout the rest of this section, we set Γ = EndRop(A)op, which contains A as

a subring via the injective ring homomorphism A → Γ, a 7→ (x 7→ xa), and set U =
HomRop(A,R) and ∆ = HomA(Γ,A).

Lemma 24. If RA ∈ PRop then UR ∈ PR and the following hold.

(1) Γ ∼= U ⊗R A as Γ -bimodules. In particular, ΓA ∈ PA.
(2) ∆ ∼= A⊗R A as (A,Γ )-bimodules.
(3) If add(UR) = add(AR) then add(∆Γ ) = PΓ and hence Γ is a Frobenius extension

of A.
(4) If add(RA) = PRop then add(ΓA) = PA.

Theorem 25. Assume add(RA) = PRop and add(AR) = PR. Then the following hold.



(1) If A is left and right noetherian then so is R.
(2) If A is Auslander-Gorenstein then so is R.
(3) If ϕ is Frobenius then inj dim A = inj dim R.

Example 26. Assume R is a commutative noetherian local ring and A is an R-algebra,
i.e., Im ϕ is contained in the center of A, such that A is a free R-module of finite rank.
Then Γ is a Frobenius extension of A and is Morita equivalent to R, so that if A is
Auslander-Gorenstein then R has to be Gorenstein. However, even if A is Auslander-
Gorenstein, it may happen that inj dim A > inj dim Γ = dim R. For instance, consider
the case where A = T2(R), the ring of 2 × 2 upper triangular matrices over R. Then A
is an Auslander-Gorenstein ring with inj dim A = dim R + 1. In fact, VA /∈ PA and A is
not a Frobenius extension of R.

3. Frobenius bimodules

In this section, we introduce the notion of Frobenius bimodules. If R is a subring of a
ring A such that AR ∈ PR and A ∼= HomR(A,R) as (R,A)-modules, then in [1] the ring
extension A/R is said to be a Frobenius extension of first kind (cf. also [11, 12]). We will
generalize this notion.

To begin with, we notice the following facts.

Proposition 27. Let ϕ : R −→ A be a Frobenius and separable ring homomorphism with
AR ∈ PR. If R is Auslander-regular then so is A.

Proposition 28. Let V be an (A,R)-bimodule with AV ∈ PAop and set Γ = EndAop(V )op

with R −→ Γ, r 7→ (v 7→ vr). Then the following hold.

(1) ΓR ∈ add(VR)
(2) If add(HomR(V,R)A) = add(HomAop(V,A)A) then add(HomR(Γ,R)Γ ) = PΓ .

Definition 29. An (A,R)-bimodule V is said to be Frobenius if VR ∈ PR, AV ∈ PAop

and HomR(V,R) ∼= HomAop(V,A) as (R,A)-bimodules.

Example 30. Let V ∈ Mod-A with add(VA) = PA and set B = EndA(V ). It then follows
by Lemma 5 that V is a Frobenius (B,A)-bimodule.

Proposition 31. Let V be an (A,R)-bimodule and ∆ a (Γ,A)-bimodule. If both V and
∆ are Frobenius then so is ∆⊗A V .

Lemma 32. Let V be a Frobenius (A,R)-bimodule and set Γ = EndAop(V )op and ψ :
R → Γ, r 7→ (v 7→ vr). Then the following hold.

(1) HomR(V,R) is a Frobenius (R,A)-bimodule.
(2) Γ is a Frobenius (Γ,R)-bimodule.

Lemma 33. For any ring homomorphism ϕ : R → A the following are equivalent.

(1) A is a Frobenius (A,R)-bimodule.
(2) A is a Frobenius (R,A)-bimodule.

Throughout the rest of this section, we fix a ring homomorphism ϕ : R → A and set
V = HomR(A,R), Γ = EndRop(A)op and ψ : A −→ Γ, a 7→ (x 7→ xa).



Proposition 34. If AR ∈ PR and AA ∼= AV then we have ρ : EndR(A)
∼−→ Γ such that

ψ = ρ ◦ ψ′ with ψ′ : A −→ EndR(A), a 7→ (x 7→ ax).

Theorem 35. If A is a Frobenius (A,R)-bimodule then the following hold.

(1) ϕ is Frobenius.
(2) Γ is a Frobenius (Γ,A)-bimodule.
(3) If add(RA) = PRop then add(AΓ ) = PAop.

Corollary 36. Let ϕ0 : A0 → A1 be a ring homomorphism and set Ai+1 = EndAop
i−1

(Ai)
op

and ϕi : Ai → Ai+1, a 7→ (x 7→ xa) for i ≥ 1 inductively. If A1 is a Frobenius (A1, A0)-
bimodule then Ai is a Frobenius (Ai, Ai−1)-bimodule for all i ≥ 1.

In the following, we denote by π : A ⊗R A −→ A, a ⊗ b 7→ ab the multiplication map.
Note that ϕ is separable if and only if there exists δ ∈ A ⊗R A such that π(δ) = 1A and
aδ = δa for all a ∈ A.

Proposition 37. The following hold.

(1) If ϕ is separable then ψ is a split monomorphism of A-bimodules.
(2) If AA⊗R A is reflexive, and if ψ is a split monomorphism of A-bimodules, then ϕ

is separable.

Lemma 38. Assume A is a Frobenius (A,R)-bimodule with φ : A
∼−→ V an isomorphism

of (R,A)-bimodules. Then τ = φ(1A) : A −→ R is a homomorphism of R-bimodules and
the following hold.

(1) φ′ : A
∼−→ HomRop(A,R), a 7→ aτ as (A,R)-bimodules.

(2) ξ : A⊗R A
∼−→ Γ, a⊗ b 7→ (x 7→ τ(xa)b) as A-bimodules.

(3) ξ′ : A⊗R A
∼−→ EndR(A), a⊗ b 7→ (x 7→ aτ(bx)) as A-bimodules.

(4) ξ = ρ ◦ ξ′.

Theorem 39. Assume A is a Frobenius (A,R)-bimodule. Let φ : A
∼−→ V be an iso-

morphism of (R,A)-bimodules and assume τ = φ(1A) : A −→ R is a split epimorphism of
R-bimodules. Then the following hold.

(1) Γ is Morita equivalent to R.
(2) ψ is separable.
(3) If A is Auslander-regular then so is R.

Example 40. Consider the case where R is a commutative field and A = R[t]/(t2). Then,

setting τ : A −→ R, r0+r1t 7→ r1, we have A
∼−→ V, r 7→ rτ as (R,A)-bimodules. Thus A is a

Frobenius (A,R)-bimodule. Since the enveloping algebra Ae = Aop⊗RA ∼= R[x, y]/(x2, y2)
is local, and since dimRA

e ̸= dimRA, π does not split in Mod-Ae, i.e., ϕ is not separable.
On the other hand, since τ is a split epimorphism of R-bimodules, ψ is separable.

4. Double centralizer

Throughout this section, we fix a finitely generated projective module P ∈ PR and
set A = EndR(P ) and Γ = EndAop(P )op with ϕ : R → Γ, r 7→ (x 7→ xr) the canonical
ring homomorphism. We will provide a sufficient condition for ϕ to be a Frobenius ring



epimorphism with ΓR ∈ PR. We refer to [13] for general theory of localization in module
categories.

In the following, we set Q = HomR(P,R) and V = Q⊗A P . Note that by Lemma 5(1)

AA ∈ add(AP ) and AA ∈ add(QA) and that by Lemma 5(2) PΓ ∈ PΓ with A
∼−→ EndΓ (P )

canonically. Also, by Lemma 4(1) HomR(P,−) ∼= −⊗R Q and HomRop(Q,−) ∼= P ⊗R −.

Lemma 41. The following hold.

(1) AA ∈ add(AP ) and PΓ ∈ PΓ with A
∼−→ EndΓ (P ) canonically, so that ΓΓ ∈

add(PΓ ) if and only if AP ∈ PAop.

(2) RQ ∈ PRop with PR
∼−→ HomRop(Q,R)R, x 7→ (f 7→ f(x)) and A

∼−→ EndRop(Q)op

canonically, so that AA ∈ add(QA) and PΓ ∈ add(VΓ ).
(3) P ⊗R Q ∼= A as A-bimodules, so that P ⊗R V ∼= P as (A,Γ )-bimodules and

V ⊗RQ ∼= Q as (R,A)-bimodules. In particular, V ⊗RV ∼= V as (R,Γ )-bimodules.
(4) HomRop(V,R) ∼= Γ as (Γ,R)-bimodules, so that RV ∈ PRop if and only if ΓR ∈ PR

with V
∼−→ HomR(Γ,R) as (R,Γ )-bimodules.

Lemma 42. The following hold.

(1) (P ⊗R −) ◦ (Q ⊗A −) ∼= HomRop(Q,−) ◦ HomAop(P,−) ∼= 1Mod-Aop, so that both

RQ⊗A − and HomAop(APR,−) are fully faithful.

(2) Γ
∼−→ EndRop(V )op canonically, so that if RV ∈ PRop then ΓΓ ∈ add(VΓ ).

(3) Γ
∼−→ EndRop(Γ )op canonically, so that if RR ∈ add(RΓ ) then ϕ : R

∼−→ Γ .

Proposition 43. If ΓΓ ⊗R Γ is torsionless then ϕ is a ring epimorphism.

Lemma 44. The following hold.

(1) For any M ∈ Mod-Rop we have a functorial homomorphism in Mod-Γ op

ωM : Γ ⊗R M −→ HomAop(P, P ⊗R M), γ ⊗m 7→ (x 7→ xγ ⊗m)

which is an isomorphism if either RV ∈ PRop or RM ∈ PRop.
(2) P ⊗R Γ

∼−→ P, x ⊗ γ 7→ xγ, so that HomΓ (P,−) ∼= HomR(P,−) on Mod-Γ and
P ⊗R − ∼= P ⊗Γ − on Mod-Γ op. In particular, if either RV ∈ PRop or RΓ ∈ PRop

then ϕ is a ring epimorphism.
(3) HomAop(P,A) ∼= HomΓ (P, Γ ) ∼= Γ ⊗RQ as (Γ,A)-bimodules, so that if AP ∈ PAop

then P is a Frobenius (A,Γ )-bimodule.

Theorem 45. If RV ∈ PRop then the following hold.

(1) ϕ is a ring epimorphism with ΓR ∈ PR, so that inj dim Γ ≤ inj dim R and
gl dim Γ ≤ gl dim R.

(2) If VΓ ∈ PΓ then ϕ is Frobenius.

Lemma 46. Let ε : V −→ R, f ⊗ x 7→ f(x) and a = Im ε. Then the following hold.

(1) a2 = a and Ker(−⊗R Q) = Mod-(R/a).
(2) RV ∈ PRop if and only if AP ∈ PAop.

Lemma 47. If AP ∈ PAop then the following hold.

(1) HomR(ΓΓR,−) ∼= HomR(APR,−)⊗A PΓ .

(2) −⊗A PΓ : Mod-A
∼−→ Mod-Γ .



(3) VΓ ∈ PΓ if and only if QA ∈ PA.

Proposition 48. The following are equivalent.

(1) RV ∈ PRop and VΓ ∈ PΓ .
(2) AP ∈ PAop and QA ∈ PA.

Example 49. (1) Let V be an (A,B)-bimodule with AV ∈ PAop and set

R =

(
A V
0 B

)
and e =

(
1A 0
0 0

)
.

Then, setting P = eR, we have A ∼= eRe and Q ∼= Re, so that AP ∼= AA ⊕ AV ∈ PAop

and QA
∼= AA ∈ PA.

(2) Let A be a commutative ring and R an A-algebra with RA ∈ PA. Assume R contains
an idempotent e with eRe = Ae. Then, setting P = eR, we have A ∼= eRe and Q ∼= Re,
so that AP ∈ PAop and QA ∈ PA.

5. Gorenstein projectives

In this final section, we deal with some questions in homological algebra which are
still open. We denote by G0

R the full subcategory of GR consisting of X ∈ GR with
HomR(X,R) = 0. The generalized Nakayama conjecture asserts that if R is right noe-
therian then G0

R would contain no simple module (see [3] for details).
To begin with, we recall the notion of Gorenstein projective modules.

Definition 50 ([6]). A module X ∈ mod-R is said to be Gorenstein projective if it is
reflexive with X ∈ GR and HomR(X,R) ∈ GRop , i.e., there exists a complex P • over PR

such that Z′0(P •) ∼= X and Hi(P •) = H−i(Hom•
R(P

•, R)) = 0 for all i ∈ Z.

It is obvious that ifXR is reflexive (resp., Gorenstein projective) then so is RHomR(X,R).
Thus the notion of Frobenius ring homomorphisms could be slightly modified to be sym-
metric in the following sense.

Proposition 51. Let ϕ : R −→ A be a ring homomorphism and set V = HomR(A,R),
B = EndA(V ) and ψ : R −→ B, r 7→ (v 7→ rv). Then the following hold.

(1) If AR is reflexive (resp., Gorenstein projective) and VA ∈ PA then RB is reflexive
(resp., Gorenstein projective) and HomRop(B,R) ∼= V as (B,R)-bimodules.

(2) If add(VA) = PA then A
∼−→ EndBop(V )op canonically and add(BV ) = PBop.

(3) If A ∼= V as (R,A)-bimodules then there exists a ring isomorphism σ : A
∼−→ B

such that ψ = σ ◦ ϕ.

Throughout the rest of this section, we fix a complete set of non-isomorphic simple
modules {Sλ}λ∈Λ in Mod-Rop and for each λ ∈ Λ we denote by Eλ = ERop(Sλ) the
injective envelope of Sλ in Mod-Rop.

Lemma 52. For any M ∈ Mod-Rop with HomRop(M,Eλ) = 0 for all λ ∈ Λ we have
M = 0, i.e., Πλ∈ΛEλ ∈ Mod-Rop is an injective cogenerator.

Corollary 53. For any X ∈ mod-R the following hold.

(1) HomR(X,R) = 0 if and only if X ⊗R Eλ = 0 for all λ ∈ Λ.



(2) If R is right noetherian then, for any i ≥ 0, ExtiR(X,R) = 0 if and only if
TorRi (X,Eλ) = 0 for all λ ∈ Λ.

Lemma 54 ([10, Corollary A.2]). Assume R is left and right noetherian. If every X ∈ GR

is torsionless then GR consists only of Gorenstein projectives.

Throughout the rest of this section, we fix a ring homomorphism ϕ : R −→ A and set
V = HomR(A,R).

Proposition 55. If AR ∈ mod-R then we have

flat dim VA = sup{inj dim AA⊗R Eλ | λ ∈ Λ}.

Example 56. If A = T2(R), the ring of 2 × 2 upper triangular matrices over R, and
ϕ : R −→ A, r 7→ diag(r, r), then AR ∈ PR and proj dim VA = 1.

In the following, we assume AR ∈ GR and inj dim AA ⊗R Eλ < ∞ for all λ ∈ Λ. In
addition, to ensure that every finitely generated X ∈ Mod-R admits a finite projective
resolution, we assume R is right noetherian. Note that A also is right noetherian.

Lemma 57. For any X ∈ GA the following hold.

(1) XR ∈ GR.
(2) If XA ∈ G0

A then XR ∈ G0
R.

(3) If XR is torsionless then so is XA.

Theorem 58. The following hold.

(1) If G0
R = {0} then G0

A = {0}.
(2) Assume XR is semisimple for all simple X ∈ Mod-A. If the generalized Nakayama

conjecture holds true for R then so does for A.
(3) Assume both R and A are left and right noetherian. If GR consists only of Goren-

stein projectives then so does GA.

Remark 59 ([2]). Let X ∈ mod-R with P • −→ X a finite projective resolution and set
Mn = Z′n(Hom•

R(P
•, R)) for n ≥ 1. Then for any n ≥ 1, if ExtiR(X,R) = 0 for 1 ≤ i < n,

the following hold.

(1) ExtiRop(Mn, R) = 0 for 1 ≤ i < n and ExtnRop(Mn, R) ∼= Ext1Rop(M1, R).
(2) If HomR(X,R) = 0 then X ∼= ExtnRop(Mn, R) with proj dim Mn ≤ n.
(3) X is torsionless if and only if ExtnRop(Mn, R) = 0.

Remark 60. (1) J.-I. Miyachi has pointed out that in general GR may contain a module
which is neither simple nor torsionless (see [10, Example A.3]).

(2) For a minimal injective resolution R −→ E• in Mod-R, it is possible that ⊕∞
k=0 E

k

is an injective cogenerator but ⊕n
k=0 E

k is not for any n ≥ 0. For instance, if R is a
commutative Gorenstein ring of infinite dimension, then for any n ≥ 0 there exists a
maximal ideal m of height d > n and we have ExtiR(R/m, R) = 0 for 0 ≤ i < d and
ExtdR(R/m, R) ̸= 0 (see [4] for details).
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